U-net Models Based on Computed Tomography Perfusion Predict Tissue Outcome in Patients with Different Reperfusion Patterns

AbstractEvaluation of cerebral perfusion is important for treatment selection in patients with acute large vessel occlusion (LVO). To assess ischemic core and tissue at risk more accurately, we developed a deep learning model named U-net using computed tomography perfusion (CTP) images. A total of 110 acute ischemic stroke patients undergoing endovascular treatment with major reperfusion ( ≥ 80%) or minimal reperfusion (≤ 20%) were included. Using baseline CTP, we developed two U-net models: one model in major reperfusion group to identify infarct core; the other in minimal reperfusion group to identify tissue at risk. The performance of fixed-thresholding methods was compared with that of U-net models. In the major reperfusion group, the model estimated infarct core with a Dice score coefficient (DSC) of 0.61 and an area under the curve (AUC) of 0.92, while fixed-thresholding methods had a DSC of 0.52. In the minimal reperfusion group, the model estimated tissue at risk with a DSC of 0.67 and an AUC of 0.93, while fixed-thresholding methods had a DSC of 0.51. In both groups, excellent volumetric consistency (intraclass correlation coefficient was 0.951 in major reperfusion and 0.746 in minimal reperfusion) was achieved between the estimated lesion and the actual l esion volume. Thus, in patients with anterior LVO, the CTP-based U-net models were able to identify infarct core and tissue at risk on baseline CTP superior to fixed-thresholding methods, providing individu...
Source: Translational Stroke Research - Category: Neurology Source Type: research