Triphenylamine ‐Based Conjugated Polyelectrolyte as a Hole Transport Layer for Efficient and Scalable Perovskite Solar Cells

In this study, the authors synthesize a triphenylamine-based anionic CPE (TPAFS-TMA) as an HTL for p-i-n-type PeSCs. TPAFS-TMA has appropriate frontier molecular orbital (FMO) levels similar to those of the commonly used poly(bis(4-phenyl)-2,4,6-trimethy lphenylamine) (PTAA) HTL. The ionic and semiconducting TPAFS-TMA shows high compatibility, high transmittance, appropriate FMO energy levels for hole extraction and electron blocking, as well as defect passivating properties, which are confirmed using various optical and electrical analyses. Thus, t he PeSC with the TPAFS-TMA HTL exhibits the best power conversion efficiency (PCE) of 20.86%, which is better than that of the PTAA-based device (PCE of 19.97%). In addition, it exhibits negligible device-to-device variations in its photovoltaic performance, contrary to the device with PTAA. Finally , a large-area PeSC (1 cm2) and mini-module (3 cm2), showing PCEs of 19.46% and 18.41%, respectively, are successfully fabricated. The newly synthesized TPAFS-TMA may suggest its great potential as an HTL for large-area PeSCs.
Source: Small - Category: Nanotechnology Authors: Tags: Research Article Source Type: research