Electromechanical Wave Imaging With Machine Learning for Automated Isochrone Generation

In this study, we developed and optimized an automated ZC selection algorithm, towards a faster more robust isochrone generation approach. The algorithm either relies on heuristic-based baselines or machine learning classifiers. Manually generated isochrones, previously validated against 3D intracardiac mapping, were considered as ground truth during training and performance evaluation steps. The machine learning models applied herein for the first time were: i) logistic regression; ii) support vector machine (SVM); and iii) Random Forest. The SVM and Random Forest classifiers successfully identified accessory pathways in Wolff-Parkinson-White patients, characterized sinus rhythm in humans, and localized the pacing electrode location in left ventricular paced canines on the resulting isochrones. Nevertheless, the best performing classifier was proven to be Random Forest with a precision rising from 89.5% to 97%, obtained with the voting approach that sets a probability threshold upon ZC candidate selection. Furthermore, the predictivity was not dependent on the type of testing dataset it was applied to, contrary to SVM that exhibited a 5% drop in precision on the canine testing dataset. Finally, these findings indicate that a machine learning approach can reduce user variability and considerably decrease the durations required for isochrone generation, while preserving accurate activation patterns.
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research