Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping

Herein, a novel approach to signal generation in tapping-mode Kelvin probe force microscopy (KPFM) is explored. A home-built field-effect transistor circuit bypasses the necessity for an AC voltage to generate KPFM signal, allowing for imaging with ≈25 nm spatial resolution. The resulting technique is compatible with photoinduced force microscopy, allowing for single-pass imaging of electrical and chemical domains simultaneously. AbstractKelvin probe force microscopy (KPFM) is a popular technique for mapping the surface potential at the nanoscale through measurement of the Coulombic force between an atomic force microscopy (AFM) tip and sample. The lateral resolution of conventional KPFM variants is limited to between ≈35 and 100 nm in ambient conditions due to the long-range nature of the Coulombic force. In this article, a novel way of generating the Coulombic force in tapping mode KPFM without the need for an external AC driving voltage is presented. A field-effect transistor (FET) is used to directly switc h the electrical connectivity of the tip and sample on and off periodically. The resulting Coulomb force induced by Fermi level alignment of the tip and sample results in a detectable change of the cantilever oscillation at the FET-switching frequency. The resulting FET-switched KPFM delivers a spat ial resolution of ≈25 nm and inherits the high operational speed of the AFM tapping mode. Moreover, the FET-switched KPFM is integrated with photoinduced force micr...
Source: Small - Category: Nanotechnology Authors: Tags: Research Article Source Type: research