The Msn2 Transcription Factor Regulates Acaricidal Virulence in the Fungal Pathogen Beauveria bassiana

Beauveria bassiana holds promise as a feasible biological control agent for tick control. The B. bassiana stress–response transcription factor Msn2 is known to contribute to fungal growth, conidiogenesis, stress–response and virulence towards insects; however, little is known concerning whether Msn2 is involved in infection across Arthropoda classes. We evaluated the effects of Msn2 on B. bassiana virulence against Rhipicephalus microplus (Acari, Ixodidae) using wild-type, targeted gene knockout (ΔBbmsn2) and complemented mutant (ΔBbmsn2/Bbmsn2) strains. Reproductive parameters of R. microplus engorged females treated topically or by an intra-hemocoel injection of conidial suspensions were assessed. Treated cuticles of engorged females were analyzed by microscopy, and proteolytic activity of B. bassiana on cuticles was assessed. Topically treated engorged females showed high mean larval hatching (>84%) in control and ΔBbmsn2 treatments, whereas treatment with the wild-type or ΔBbmsn2/Bbmsn2 strains resulted in significantly decreased (lowered egg viability) larval hatching. Percent control of R. microplus topically treated with ΔBbmsn2 was lower than in the groups treated with wild-type (56.1%) or ΔBbmsn2/Bbmsn2 strains. However, no differences on reproductive parameters were detected when R. microplus were treated by intra-hemocoel injection using low (800 conidia/tick) doses for all strains tested; R. microplus injected with high doses of wild-type or mutant st...
Source: Frontiers in cellular and infection microbiology - Category: Microbiology Source Type: research
More News: Genetics | Microbiology