Nanohybrid magnetic composite optosensing probes for the enrichment and ultra-trace detection of mafenide and sulfisoxazole

Talanta. 2021 Jun 1;228:122237. doi: 10.1016/j.talanta.2021.122237. Epub 2021 Feb 22.ABSTRACTNanohybrid magnetic optosensing probes were designed and fabricated to enrich and detect ultra-trace levels of mafenide and sulfisoxazole simultaneously. The probes combined the high affinity of MIL-101 and the sensitivity of graphene quantum dots (GQDs) and cadmium telluride quantum dots (CdTe QDs) with the selectivity and rapid separation provided by a magnetic molecularly imprinted polymer (MMIP). Since the MIL101-MMIP-GQD and MIL101-MMIP-CdTe QD probes produced high fluorescence emission intensities at 435 and 572 nm, respectively, mafenide and sulfisoxazole could be simultaneously detected. Quantitative analysis was based on fluorescence quenching produced by binding between target molecules and imprinted recognition cavities. In the optimal experimental condition, emission intensity was quenched linearly with increasing analyte concentration from 0.10 to 25.0 μg L-1. Limit of detection was 0.10 μg L-1 for mafenide and sulfisoxazole. The developed optosensor was applied to detect ultra-trace amounts of mafenide and sulfisoxazole in bovine milk. Recoveries of mafenide and sulfisoxazole in spiked bovine milk ranged from 80.4 to 97.9% with RSDs <5% and the analysis results agreed well with HPLC analysis. The proposed probes provided excellent sensitivity, selectivity, ease and convenience of use.PMID:33773739 | DOI:10.1016/j.talanta.2021.122237
Source: Talanta - Category: Chemistry Authors: Source Type: research