Community diversity metrics, interactions, and metabolic functions of bacteria associated with municipal solid waste landfills at different maturation stages

This study determined bacterial community composition, interaction conetworks, metabolic functions, and controlling physicochemical properties in two landfills aged 14 and 36  years. High throughput sequencing revealed a similar distribution of bacterial diversity, evenness, and richness in the 14‐ and 36‐year‐old landfills in the 0–90 cm depth. At deeper layers (120–150 cm), the 14‐year‐old landfill had significantly greater bacterial diversity and rich ness indicating that it is a more active microcosm than the 36‐year‐old landfill, where phylumEpsilonbacteraeota was overwhelmingly dominant. The taxonomic and functional diversity in the 14 ‐year‐old landfill was further reflected by the abundant presence of indicator generaPseudomonas,Lutispora,Hydrogenspora, andSulfurimonas coupled with the presence of biomarker enzymes associated with carbon (C), nitrogen (N), and sulfur (S) metabolism. Furthermore, canonical correspondence analysis revealed that bacteria in the 14 ‐year‐old landfill were positively correlated with high C, N, S, and phosphorus resulting in positive cooccurrence interactions. In the 36‐year‐old landfill, negative coexclusion interactions populated by members of N fixingRhizobiales were dominant, with metabolic functions and biomarker enzymes predicting significant N fixation that, as indicated by interaction network, potentially inhibited ammonia ‐intolerant bacteria. Overall, our findings show that diverse bacterial comm...
Source: MicrobiologyOpen - Category: Microbiology Authors: Tags: ORIGINAL ARTICLE Source Type: research