Fouling potentials and properties of foulants in an innovative algal-sludge membrane bioreactor

This study focused on the effect of algae on the fouling potential and dynamic fouling variation of foulants in an innovative algal-sludge membrane bioreactor (AS-MBR). Filtration experiments revealed that the soluble extracellular polymeric substance (S-EPS) released by the algal-sludge flocs showed a slower diminishing rate of flux than that released by the sludge flocs. The intermediate blocking and cake filtration models demonstrated the major mechanisms, which implied a reduction in the driving force of pore blocking and fouling layer formation induced by the algal-bacterial S-EPS. Furthermore, the relative flux decrements of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) in the AS-MBR were lower than those of the control without algae, indicating a reduction in the fouling potential of the bound EPS (B-EPS) in the algal-sludge flocs compared to the control. This could be attributed to the reduction in the membrane intercepts for LB- and TB-EPS, respectively. Specifically, S-EPS and B-EPS released by algal-sludge flocs had a lower free energy of cohesion (ΔGcoh) than those released by sludge flocs (decreased of 19.14%, 45.93%, and 43.34% for the S-EPS, LB-EPS, and TB-EPS, respectively). Furthermore, these changes could contribute to the decrease in the relative abundance of adsorbed polysaccharide- and protein-like substances in the B-EPS (released by algal-sludge flocs) filtration membrane, leading to the formation of less rough peaks and valleys in the foul...
Source: Environment International - Category: Environmental Health Authors: Source Type: research