Overcoming interferon (IFN)- γ resistance ameliorates transforming growth factor (TGF)-β-mediated lung fibroblast-to-myofibroblast transition and bleomycin-induced pulmonary fibrosis.

Overcoming interferon (IFN)-γ resistance ameliorates transforming growth factor (TGF)-β-mediated lung fibroblast-to-myofibroblast transition and bleomycin-induced pulmonary fibrosis. Biochem Pharmacol. 2020 Dec 04;:114356 Authors: Chang CJ, Lin CF, Lee CH, Chuang HC, Shih FC, Wan SW, Tai C, Chen CL Abstract Abnormal activation of transforming growth factor (TGF)-β is a common cause of fibroblast activation and fibrosis. In bleomycin (BLM)-induced lung fibrosis, the marked expression of phospho-Src homology-2 domain-containing phosphatase (SHP) 2, phospho-signal transducer and activator of transcription (STAT) 3, and suppressor of cytokine signaling (SOCS) 3 was highly associated with pulmonary parenchymal lesions and collagen deposition. Human pulmonary fibroblasts differentiated into myofibroblasts exhibited activation of SHP2, SOCS3, protein inhibitor of activated STAT1, STAT3, interleukin (IL)-6, and IL-10. The significant retardation of interferon (IFN)-γ signaling in myofibroblasts was revealed by the decreased expression of phospho-STAT1, IFN-γ-associated genes, and IFN-γ-inducible protein (IP) 10. Microarray analysis showed an induction of fibrotic genes in TGF-β1-differentiated myofibroblasts, whereas IFN-γ-regulated anti-fibrotic genes were suppressed. Interestingly, BIBF 1120 treatment effectively inhibited both STAT3 and SHP2 phosphorylation in TGF-β1-differentiated myofibroblasts and BLM fibrotic lung tissues, wh...
Source: Biochemical Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Biochem Pharmacol Source Type: research