Photoluminescent Investigation of the Doping Site of Eu3+-Doped [Zn3(BTC)2·12H2O] Metal-Organic Framework Prepared by Microwave-Assisted Hydrothermal Synthesis

The [Zn3(BTC)2 ·12H2O] (BTC = 1,3,5-tricarboxylate) metal-organic framework (MOF) was successfully synthesized using a microwave-assisted hydrothermal synthesis technique, which allowed for significantly decreased reaction time compared to the production of the same compound via conventional heating. In situ dopi ng with Eu3+ ions at concentrations ranging from 1.0 to 5.0 mol% produced doped materials whose emission ranged from blue to red color. The Eu3+ spectroscopic properties were used to study the incorporation of the dopant into the structure of [Zn3(BTC)2·12H2O], even at very low concentrations. Thes e experiments confirmed the usefulness of this ion as a luminescent probe, as it permitted the identification of small variations in structure not perceptible by X-ray diffraction. The variation in the coordination environment induced by increases in doping percentage was analyzed by evaluating chan ges in the characteristic Eu3+ excitation and emission profiles, using them to calculate luminescence lifetimes, experimental intensity parameters Ω λ ( λ : 2 and 4) as well as the intrinsic quantum yield (QEu+3Eu+3) of the 5D0 emitting level of each doped MOF. The excitation and luminescence spectra show that intramolecular energy transfer from the BTC linker to Eu3+ ion, and we could observe the emission color tuning originated from the emissions of the BTC ligand and Eu3+ ion.
Source: Journal of the Brazilian Chemical Society - Category: Chemistry Source Type: research