Rosmarinic acid inhibits oxLDL-induced inflammasome activation under high-glucose conditions through downregulating the p38-FOXO1-TXNIP pathway.

In this study, we aimed to investigate the protective effect of rosmarinic acid against diabetic atherosclerosis and the related signaling pathway. oxLDL-mediated oxidative stress upregulated thioredoxin-interacting protein (TXNIP) and subsequently induced binding of TXNIP to NLRP3 to mediate NLRP3 inflammasome assembly and activation under HG conditions in ECs. Reactive oxygen species (ROS) scavengers, p38 and FOXO1 inhibitors and TXNIP siRNA inhibited TXNIP protein upregulation and NLRP3 inflammasome assembly and activation. Rosmarinic acid abrogated TXNIP protein upregulation and the interaction between TXNIP and NLRP3 to attenuate NLRP3 inflammasome assembly and activation and eventually IL-1β secretion in ECs through downregulating ROS production, p38 phosphorylation and FOXO1 protein induction in ECs. These findings show that rosmarinic acid inhibits endothelial dysfunction which is shown in diabetic atherosclerosis through downregulating the p38-FOXO1-TXNIP pathway and inhibiting inflammasome activation. PMID: 33011160 [PubMed - as supplied by publisher]
Source: Biochemical Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Biochem Pharmacol Source Type: research