The de Rham-Hodge Analysis and Modeling of Biomolecules.

The de Rham-Hodge Analysis and Modeling of Biomolecules. Bull Math Biol. 2020 Aug 08;82(8):108 Authors: Zhao R, Wang M, Chen J, Tong Y, Wei GW Abstract Biological macromolecules have intricate structures that underpin their biological functions. Understanding their structure-function relationships remains a challenge due to their structural complexity and functional variability. Although de Rham-Hodge theory, a landmark of twentieth-century mathematics, has had a tremendous impact on mathematics and physics, it has not been devised for macromolecular modeling and analysis. In this work, we introduce de Rham-Hodge theory as a unified paradigm for analyzing the geometry, topology, flexibility, and Hodge mode analysis of biological macromolecules. Geometric characteristics and topological invariants are obtained either from the Helmholtz-Hodge decomposition of the scalar, vector, and/or tensor fields of a macromolecule or from the spectral analysis of various Laplace-de Rham operators defined on the molecular manifolds. We propose Laplace-de Rham spectral-based models for predicting macromolecular flexibility. We further construct a Laplace-de Rham-Helfrich operator for revealing cryo-EM natural frequencies. Extensive experiments are carried out to demonstrate that the proposed de Rham-Hodge paradigm is one of the most versatile tools for the multiscale modeling and analysis of biological macromolecules and subcellular organelles. Accur...
Source: Bulletin of Mathematical Biology - Category: Bioinformatics Authors: Tags: Bull Math Biol Source Type: research