Relationship between Changes in Chemical Composition of Enamel Subsurface Lesions and the Emitted Nonlinear Optical Signals: An in vitro Study

The development of new diagnostic technologies based on the light scattering and autofluorescence properties of dental tissues is required to improve the diagnostic ability of initial caries lesions earlier than previously done and promoting the potential of treatment without surgical intervention. The aim of this study is to correlate fluorescence-based results provided by multiphoton microscopy (MPM) with confocal Raman microscopy records using phosphate level at 960 cm–1 and the organic matrix at ∼2,931 cm–1 in healthy and demineralized human enamel. Measurements on 14 teeth were made using two incident lights of different wavelengths, released by confocal Raman microscopy and MPM. Raman phosphate peak intensity at 960 cm–1 along with organic to mineral ratio at (2,931/430 cm–1) and nonlinear optical signals (second harmonic generation [SHG] and intrinsic two-photon excited fluorescence [I2PEF]) were recorded from the demineralized and healthy enamel sites. Raman spectral maps showed that the higher the organic/mineral ratio in the demineralized enamel, the lower the intensity of mineral component in the same zone. MPM revealed new optical indicators of carious lesion as shown by the presence of a red-shifted fluorescence peak in the 650- to 750-nm area of the fluorescence spectrum of demineralized enamel. Moreover, on sample regions with insignificant autofluorescence, the emergence of the SHG signal could be noted. By comparing I2PEF images with the structural ...
Source: Caries Research - Category: Dentistry Source Type: research
More News: Chemistry | Dentistry | Organic | Study