Variable spot size optical system for a dual-wavelength laser therapy device

Journal of Innovative Optical Health Sciences, Ahead of Print. The majority of existing high-power laser therapeutic instruments employ a single wavelength for a single target; thus, they do not meet the requirements for clinical treatment. Therefore, this study designs an optical system for a dual-wavelength high-power laser therapeutic device with a variable spot size. The waist of the short arm of the optical cavity and the G1G2 parameter (G-parameter equivalent cavity method) is calculated using MATLAB software, the spot size and divergence angle on the lens are calculated using an ABCD matrix, and the distance between the treatment spot at different spot sizes and the transformation lens is calculated in order to design the treatment handpiece. Experiments are conducted to analyze the stability at an output power of 532  nm before beam combination and the power loss after beam combination. The results show that the output power stability of the 532-nm beam varies by less than 2% over 150 min, and the loss of both wavelengths is less than 20%, which meets the clinical requirements of the system. The safety perform ance can meet the requirements of national general standards for medical electrical safety. The proposed dual-wavelength laser therapy instrument has both visible wave and near-infrared wave characteristics; thus, it can accurately target both superficial vessels and vessels with a larger diameter a nd deeper position. This therapeutic device has the advantage...
Source: Journal of Innovative Optical Health Sciences - Category: Biomedical Science Authors: Source Type: research