Novel bidentate oxovanadium(IV) glycolate, α-hydroxybutyrate and citrate with terpyridine and their conversions to nitrosyl products.

Novel bidentate oxovanadium(IV) glycolate, α-hydroxybutyrate and citrate with terpyridine and their conversions to nitrosyl products. J Inorg Biochem. 2020 Apr 23;208:111086 Authors: Jin WT, Zhou ZH Abstract A series of monomeric α-hydroxycarboxylato oxovanadium(IV) complexes [VO(H2cit)(tpy)]·H2O (1) (H4cit = citric acid, tpy = 2,2':6',2-terpyridine), [VO(glyc)(tpy)]·5.5H2O (2) (H2glyc = glycolic acid) and [VO(α-hbut)(tpy)]·3H2O (3) (α-H2hbut = α-hydroxybutyratic acid) have been obtained from the reactions of vanadyl sulfate with α-hydroxycarboxylates and terpyridine in acidic solutions. These complexes feature bidentate citrate, glycolate or α-hydroxybutyrate respectively. The ligand chelates to vanadium atom through α-hydroxy (in 1) or α-alkoxy (in 2 and 3) and α-carboxy groups, while β-carboxy groups of citrate in 1 are free to participate strong hydrogen bonds with neighboring citrate. With comparable chelation, 1 shares a similar V-Oα-hydroxy distance [2.168(1) Å] with that observed in FeV-cofactor [2.17 Å] [1]. Moreover, nitrosyl vanadium complexes [V(NO)(glyc)(tpy)]·3H2O (4) and [V(NO)(α-hbut)(tpy)]·4H2O (5) were obtained via reductions of synthetic solutions of 2 and 3 with hydroxylamine respectively. The terminal oxygen atoms were substituted by linear nitrosyl groups in 4 and 5. They were fully characterized by UV-vis, IR, EPR spectra, X-ray structural analyses and theoretical bond valence calcu...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research
More News: Biochemistry | Science