Improvement of the production of an Arctic bacterial exopolysaccharide with protective effect on human skin cells against UV-induced oxidative stress.

In this study, we improved the EPS production of SM1127 and evaluated its protective effect on human dermal fibroblasts (HDFs) against UV-induced oxidative stress. With glucose as carbon source, the EPS yield was increased from 2.11 to 6.12 g/L by optimizing the fermentation conditions using response surface methodology. To lower the fermentation cost and decrease corrosive speed in stainless steel tanks, whole sugar, whose price is only 8% of that of glucose, was used to replace glucose and NaCl concentration was reduced to 4 g/L in the medium. With the optimized conditions, fed-batch fermentation in a 5-L bioreactor was conducted, and the EPS production reached 19.25 g/L, which represents the highest one reported for a polar microorganism. Moreover, SM1127 EPS could maintain the cell viability and integrity of HDFs under UV-B radiation, probably via decreasing intracellular reactive oxygen species level and increasing intracellular glutathione content and superoxide dismutase activity. Therefore, SM1127 EPS has significant protective effect on HDFs against UV-induced oxidative stress, suggesting its potential to be used in preventing photoaging and photocarcinogenesis. Altogether, this study lays a good foundation for the industrialization of SM1127 EPS, which has promising potential to be used in cosmetics and medical fields. PMID: 32285173 [PubMed - as supplied by publisher]
Source: Applied Microbiology and Biotechnology - Category: Microbiology Authors: Tags: Appl Microbiol Biotechnol Source Type: research