Functional analysis of membrane vesicles of Listeria monocytogenes suggests a possible role in virulence and physiological stress response

Publication date: Available online 18 February 2020Source: Microbial PathogenesisAuthor(s): Raman Karthikeyan, Pratapa Gayathri, Paramasamy Gunasekaran, Medicharla V. Jagannadham, Jeyaprakash RajendhranAbstractMembrane vesicles (MVs) are naturally secreted by many pathogenic organisms and have various functions that include the release of microbial virulence factors that contributes to pathogenesis. However, very little is known regarding the function of Gram-positive bacteria membrane vesicles. Here, we investigated the functional role of membrane vesicles of Listeria monocytogenes. We found that L. monocytogenes secreted MVs are spherical and diameter size around 192.3 nm. Here, we investigated the role of L. monocytogenes membrane vesicles in interbacterial communication to cope with antibiotic stress. We found that MVs are protecting the bacteria against the antibiotics trimethoprim and streptomycin. These MVs enabled streptomycin-susceptible L. monocytogenes 1143 to survive in the presence of streptomycin. The zeta potential, dynamic light scattering (DLS) and 1-Nphenylnapthylamine (NPN)-uptake assay reveals that MVs protect the bacterium from active antibiotics by different strategies. Exposure to environmental stressors was shown to increase the level of MV production in L. monocytogenes. The biological activity of MV-associated listeriolysin O, internalin B, and phosphatidylinositol-specific phospholipase C (PI-PLC) was investigated using epithelial cell cytotoxicit...
Source: Microbial Pathogenesis - Category: Infectious Diseases Source Type: research