Generalist grasshoppers from thermally variable sites do not have higher thermal tolerance than grasshoppers from thermally stable sites - A study of five populations

Publication date: Available online 23 January 2020Source: Journal of Thermal BiologyAuthor(s): Devin B. Preston, Steven G. JohnsonAbstractThermal tolerance allows many organisms, including insects, to withstand stressful temperatures. Thermal generalists are expected to have higher thermal tolerance than specialists, but the environmental conditions leading to the evolution of a thermal generalist life history are not fully understood. Thermal variability has been put forth as an evolutionary driver of high thermal tolerance, but rarely has this been empirically tested. We used a generalist agricultural pest grasshopper, Melanoplus differentialis, to test upper and lower thermal limits of populations that experienced different levels of thermal variability.We quantified thermal heterogeneity at five sites in a longitudinal transect in the Midwestern U.S. by examining, over a 101-year period, 1) variance in daily thermal maxima and minima; and 2) daily range. Also, as a measure of a biologically relevant thermal extreme, we depicted days per month at each site that reached a stressfully high temperature for M. differentialis. We collected individuals from these sites and tested their upper and lower thermal limits. We found that most of our metrics of thermal heterogeneity differed among sites, while all sites experienced an average of at least two stressfully high temperature events per month. We found that heavier males from these sites were able to withstand both warmer and...
Source: Journal of Thermal Biology - Category: Biology Source Type: research