Top1 and Top2 promote replication fork arrest at a programmed pause site [Outlook]

Programmed fork pausing is a complex process allowing cells to arrest replication forks at specific loci in a polar manner. Studies in budding yeast and other model organisms indicate that such replication fork barriers do not act as roadblocks passively impeding fork progression but rather elicit complex interactions between fork and barrier components. In this issue of Genes & Development, Shyian and colleagues (pp. 87–98) show that in budding yeast, the fork protection complex Tof1–Csm3 interacts physically with DNA topoisomerase I (Top1) at replication forks through the C-terminal domain of Tof1. Fork pausing at the ribosomal DNA (rDNA) replication fork barrier (RFB) is impaired in the absence of Top1 or in a tof1 mutant that does not bind Top1, but the function of Top1 can be partially compensated for by Top2. Together, these data indicate that topoisomerases play an unexpected role in the regulation of programmed fork pausing in Saccharomyces cerevisiae.
Source: Genes and Development - Category: Genetics & Stem Cells Authors: Tags: DNA Recombination and Repair Outlook Source Type: research