Designing protein structures and complexes with the molecular modeling program Rosetta [Computational Biology]

Proteins perform an amazingly diverse set of functions in all aspects of life. Critical to the function of many proteins are the highly specific three-dimensional structures they adopt. For this reason, there is strong interest in learning how to rationally design proteins that adopt user-defined structures. Over the last 25 years, there has been significant progress in the field of computational protein design as rotamer-based sequence optimization protocols have enabled accurate design of protein tertiary and quaternary structure. In this award article, I will summarize how the molecular modeling program Rosetta is used to design new protein structures and describe how we have taken advantage of this capability to create proteins that have important applications in research and medicine. I will highlight three protein design stories: the use of protein interface design to create therapeutic bispecific antibodies, the engineering of light-inducible proteins that can be used to recruit proteins to specific locations in the cell, and the de novo design of new protein structures from pieces of naturally occurring proteins.
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: ASBMB Award Articles Source Type: research