Identifying genuine protein–protein interactions within communities of gene co-expression networks using a deconvolution method

Direct relationships between biological molecules connected in a gene co-expression network tend to reflect real biological activities such as gene regulation, protein–protein interactions (PPIs), and metabolisation. As correlation-based networks contain numerous indirect connections, those direct relationships are always ‘hidden’ in them. Compared with the global network, network communities imply more biological significance on predicting protein function, detecting protein complexes and studying network evolution. Therefore, identifying direct relationships in communities is a pervasive and important topic in the biological sciences. Unfortunately, this field has not been well studied. A major thrust of this study is to apply a deconvolution algorithm on communities stemming from different gene co-expression networks, which are constructed by fixing different thresholds for robustness analysis. Using the fifth Dialogue on Reverse Engineering Assessment and Methods challenge (DREAM5) framework, the authors demonstrate that nearly all new communities extracted from a ‘deconvolution filter’ contain more genuine PPIs than before deconvolution.
Source: IET Systems Biology - Category: Biology Source Type: research
More News: Biology | Genetics | Study