Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction

This study measured the residual stress in full-scale laser cladded rails where the residual stresses were measured in the cladding layer, heat affected zone (HAZ) and substrate zone of the railhead. A new sample preparation strategy was developed to quantify the residual stresses in the full-scale rails with high spatial resolution. Higher compressive residual stress was found in the cladding layer, which may have resulted from the martensitic transformation occurred in that region. Tensile stresses occurred in the HAZ to a depth of 4 mm, which might be mainly caused by thermal contraction and volumetric change in the microstructure. The addition of a second cladding layer did not significantly affect the magnitude of the residual stresses, but the peak tensile residual stress shifted to a deeper location from the surface, which is beneficial in resisting wear. Post-cladding heat treatment significantly reduced the undesirable high residual stress from the cladding layer and HAZ.
Source: Journal of Materials Processing Technology - Category: Materials Science Source Type: research