Identification of return of spontaneous circulation during cardiopulmonary resuscitation via pulse oximetry in a porcine animal cardiac arrest model

AbstractIn this prospective study we investigated whether the pulse oximetry plethysmographic waveform (POP) could be used to identify return of spontaneous circulation (ROSC) during cardio-pulmonary resuscitation (CPR). Tweleve pigs (28  ± 2 kg) were randomly assigned to two groups: Group I (non-arrested with compressions) (n = 6); Group II (arrested with CPR and defibrillation) (n = 6). Hemodynamic parameters and POP were collected and analyzed. POP was analyzed using both a time domain method and a frequency domain method. In Group I, when compressions were carried out on subjects with a spontaneous circulation, a hybrid fluctuation or “envelope” phenomenon appeared in the time domain method and a “double” or “fusion” peak appeared in the frequency domain method. In Group II, after the period of ve ntricular fibrillation was induced, the POP waveform disappeared. With compressions, POP showed a regular compression wave. After defibrillation, ROSC, and continued compressions, a hybrid fluctuation or “envelope” phenomenon appeared in the time domain method and a “double” or “fusion” peak appeared in the frequency domain method, similar to Group I. Analysis of POP using the time and frequency domain methods could be used to identify ROSC during CPR.
Source: Journal of Clinical Monitoring and Computing - Category: Information Technology Source Type: research