Preparation, Characterization and Application of Surface Modified Biochar from Date Seed for Improved Lead, Copper, and Nickel Removal from Aqueous Solutions

Publication date: Available online 23 August 2019Source: Journal of Environmental Chemical EngineeringAuthor(s): Zainab Mahdi, Ali El Hanandeh, Qiming Jimmy YuAbstractHeavy metal adsorption from aqueous solution onto modified biochar derived from date seed biomass was investigated. Modification methods included pre-treatment of the biomass prior to pyrolysis using NaOH and HCl (labelled as DSB-PB and DSB-PA respectively) and post–treatment of the biochar pyrolyzed at 550 °C for 3 h with NaOH and HCl (labelled as DSB-BW and DSB-AW respectively). Modified biochars were compared to unmodified one in terms of their surface chemistry, morphology, metal uptake, and adsorption kinetic behaviour. Scanning electron microscopy images show that acid and base treatment enhanced the biochar porous structure. Fourier-transform infrared spectroscopy revealed that acid treatment had enriched the functional groups such as C = C, C = O, C–O, and phenolic groups on the biochar surface which further facilitated metal ions adsorption. Alkali treatment had less significant impact on the biochar surface functional groups. Modification improved the adsorption capacity for all metals. Most notably, DSB-PA biochar showed the highest adsorption capacities of 0.911, 0.705, and 0.692 mmol g-1 for Pb2+, Cu2+, and Ni2+ respectively. Compared to the unmodified biochar, the adsorption capacities of DSB-PA for Pb2+, Cu2+, and Ni2+ increased by 27%, 66% and 98%, respectively. Sips model adeq...
Source: Journal of Environmental Chemical Engineering - Category: Chemistry Source Type: research