Single channel surface electromyogram deconvolution to explore motor unit discharges

AbstractInterference surface electromyogram (EMG) reflects many bioelectric properties of active motor units (MU), which are however difficult to estimate due to the asynchronous summation of their discharges. This paper introduces a deconvolution technique to estimate the cumulative firings of MUs. Tests in simulations show that the power spectral density of the estimated MU firings has a low-frequency peak corresponding to the mean firing rate of MUs in the detection volume of the recording system, weighted by the amplitudes of MU action potentials. The peak increases in amplitude and its centroid shifts to a higher frequency when MU synchronization is simulated (mainly due to the shift of discharges of large MUs). The peak is found even at high force levels, when such a contribution does not emerge from the EMG. This result is also confirmed in preliminary applications to experimental data. Moreover, the simulated cumulative firings of MUs are estimated with a correlation above 90% (considering frequency contributions up to 150 Hz), for all force levels. The method requires a single EMG channel, thus being feasible even in applied studies using simple recording systems. It may open many potential applications, e.g., in the study of the modulation of MU firing rate induced by either fatigue or pathology and in coherency analysis.Graphical AbstractExamples of application of the deconvolution (Deconv) algorithm and comparison with the cumulative firings and the cumulated weig...
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research