Nanowire-array-based gene electro-transfection system driven by human-motion operated triboelectric nanogenerator

Publication date: Available online 15 July 2019Source: Nano EnergyAuthor(s): Chengbin Yang, Guang Yang, Qingling Ouyang, Shuangyang Kuang, Peiyi Song, Gaixia Xu, Daniel Puiu Poenar, Guang Zhu, Ken-Tye Yong, Zhong Lin WangAbstractElectro-transfection serves as a promising non-viral gene delivery approach, but its performance faces several drawbacks associated with the high-voltage electrical pulses involved, which may adversely affect the cell viability. Here we developed a novel TENG (triboelectric nanogenerator)-driven nanowire electrode array (T-NEA) platform to facilitate the electroporation-based siRNA delivery into both adhesive and non-adhesive mammalian cells. Unlike conventional electroporation technology, the T-NEA system is powered by a TENG working in a vertical contact-separation mode, harvesting energy from simple human tapping motion. Since lower voltage is involved in the T-NEA system as compared to conventional electroporation method, high (>90%) cell viability was achieved for all of the six kinds of cell lines used in the experiments. Highly efficient siRNA electro-transfection was achieved at a tiny amount of energy consumption. The results exhibit that siRNA molecules could be successfully delivered into more than 95% of MiaPaCa-2 cell. Even for K562 cells, which is well-known as difficult-to-transfect cell, the delivery efficiency of siRNA reaches 84%. With the T-NEA system, the K-ras gene expression in MiaPaCa-2 cells was down-regulated by 46 ±â...
Source: Nano Energy - Category: Nanotechnology Source Type: research