Osteoclastogenesis from bone marrow cells during estrogen-induced medullary bone formation in Japanese quails

AbstractOsteoclasts are differentiated from hematopoietic mononuclear cells by regulation of the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) system. Medullary bone (MB) that forms in the bone marrow of female birds is remodeled under the control of circulating estrogen (E2) during the laying period. Although the osteoclasts of MB are differentiated from mononuclear cells, the mechanism of osteoclastogenesis is not known. We investigated whether MB osteoclastogenesis is regulated by the RANK/RANKL/OPG system using MB from male quails induced with E2. Bone marrow cells (BMCs) differentiate into osteoclasts that have the ability of bone resorption via stimulation of RANKL/M-CSF, but this ability is suppressed by OPG and differentiation is inhibited by calcinurin inhibitors. We found that BMCs at 3  days after E2 administration had high bone osteoclastogenesis ability and colony forming unit-granulocyte/macrophage (CFU-GM)/colony forming unit-macrophage (CFU-M) formation abilities. We conclude that MB osteoclasts are differentiated from BMCs by the RANK/RANKL/OPG system, and that precursor ce lls of osteoclasts are increased during MB formation.
Source: Journal of Molecular Histology - Category: Laboratory Medicine Source Type: research