Non-Markovianity in the presence of multiple thermal environments via collision model

Publication date: Available online 7 May 2019Source: Physics Letters AAuthor(s): Qi Zhang, Zhong-Xiao Man, Yun-Jie XiaAbstractBy means of the collision model, we study the non-Markovianity of an open quantum system S being coupled to M thermal reservoirs. In our model, each reservoir is modeled as a chain of ancillas whose intracollisions account for the occurrence of non-Markovian dynamics. We show that by incorporating M reservoir ancillas into the system, the non-Markovian dynamics of S can be embedded in the extended system that experiences a completely Markovian dynamics. The number M of involved reservoirs can thus be identified as the memory depth and determines the degree of the non-Markovianity. In the equilibrium case with identical temperatures for all the reservoirs, we show that though the non-Markovianity is proportional to M in the zero and relatively low temperature regimes, in the relatively high temperature regime such proportional relation holds only for the weak intracollisions of the reservoir ancillas. In the nonequilibrium situation, we examine the effect of temperature difference of reservoirs on the non-Markovianity. Focusing on a simple situation with two reservoirs, we observe that the nonzero temperature difference has a significant impact on the non-Markovianity.
Source: Physics Letters A - Category: Physics Source Type: research