Wnt-RhoA Signaling Pathways in Fluoride-Treated Ameloblast-Lineage Cells

This study examined the effect of sodium fluoride (NaF) on the Wnt and RhoA signaling pathways in murine ameloblast-lineage cells (ALCs) to better understand the developmental mechanisms of dental fluorosis. Wnt and Rho pathway activities were investigated when ALCs were treated with 1.5 mM NaF, dickkopf-related protein-1 (Dkk-1), secreted frizzled related-protein-2 (sFRP-2), β-catenin siRNA dominant negative RhoA (RhoADN) plasmid and Y-27632. Wnt pathway activity was investigated via RT-PCR, Western blot and Topflash luciferase assay. The activity of the RhoA pathway was analyzed via Rho pull-down assay and immunoprecipitation. The differentiation of ALCs was analyzed by alkaline phosphatase assay. Western blot and Topflash luciferase assay results verified that both the Wnt and Rho pathways were upregulated by 1.5 mM NaF. Wnt was discovered to be located upstream from the Rho pathway, as confirmed by treatment with Wnt pathway cell receptor inhibitors Dkk-1 and sFRP-2, leading to a decrease in RhoA and ROCK activity. Inhibition of the Rho pathway with RhoADN plasmid and Y-27632 caused upregulation of Wnt pathway activity which could be further increased by 1.5 mM NaF. The increased Wnt pathway activity was found to negatively regulate ALC differentiation. These data suggest that fluoride could induce the cross-talk between Wnt and RhoA signaling pathways, and these responses are predicted to contribute to the development of enamel fluorosis.Cells Tissues Organs
Source: Cells Tissues Organs - Category: Cytology Source Type: research