Selective effects of temperature on the sensory irritation but not taste of NaCl and citric acid.

This study investigated the effect of temperature on taste and chemesthetic sensations produced by the prototypical salty and sour stimuli NaCl and citric acid. Experiment 1 measured the perceived intensity of irritation (burning, stinging) and taste (saltiness, sourness) produced on the tongue tip by brief (3 sec) exposures to suprathreshold concentrations of NaCl and citric acid at 3 different temperatures (12, 34, 42°C). No significant effects of temperature were found on the taste or sensory irritation of either stimulus. Experiment 2 investigated the potential effects of temperature on sensory irritation at peri-threshold concentrations and its sensitization over time. Measurements were again made on the tongue tip at the same 3 temperatures. Heating was found to enhance the perception of irritation at peri-threshold concentrations for both stimuli, whereas cooling suppressed sensitization of irritation for NaCl but not for citric acid. These results (i) confirm prior evidence that perception of suprathreshold salty and sour tastes are independent of temperature; (ii) demonstrate that heat has only weak effects on sensory irritation produced by brief exposures to NaCl and citric acid; and (iii) suggest that sensitization of the irritation produced by NaCl and citric acid occur via different peripheral mechanisms that have different thermal sensitivities. Overall the results are consistent with involvement of the heat-sensitive channel TRPV1 in the sensory irritation of ...
Source: Chemical Senses - Category: Biochemistry Authors: Tags: Chem Senses Source Type: research