Investigating HCMV entry into host cells by STEM Tomography

Publication date: Available online 20 October 2018Source: Journal of Structural BiologyAuthor(s): Mohamed E.A. Abdellatif, Christian Sinzger, Paul WaltherAbstractHuman cytomegalovirus (HCMV) entry into susceptible cells is a fast intricate process that is not fully understood. Although, previous studies explored different aspects of this process by means of biochemical and inhibitors assays, a clear morphological characterization of its steps at the ultrastructural level is still lacking. We attempted to characterize those intermediates involved during HCMV entry by developing a methodological approach that resulted in optimal ultrastructure preservation and allowed for 3D imaging. It involves rapid freezing and cryosubstitution which ensure a clear visibility of membranous leaflets as well as retained membranous continuity. Likewise, it delivered a reproducible optimization of the growth and infection conditions that are pivotal towards maintaining biologically active enriched input virus particles. Data acquisition was achieved through STEM tomography in a 3D context. Indeed, several intermediates that characterize HCMV entry-related events were observed both extra- and intracellularly. Some of the cell-membrane associated viral particles that we referred to as “Pinocchio particles” were morphologically altered in comparison to the cell-free virions. We were also able to characterize intracellular fusion intermediates taking place between the viral envelope and the vesi...
Source: Journal of Structural Biology - Category: Biology Source Type: research