Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens

Publication date: Available online 18 October 2018Source: CellAuthor(s): Aleksandra Wroblewska, Maxime Dhainaut, Benjamin Ben-Zvi, Samuel A. Rose, Eun Sook Park, El-Ad David Amir, Anela Bektesevic, Alessia Baccarini, Miriam Merad, Adeeb H. Rahman, Brian D. BrownSummaryCRISPR pools are being widely employed to identify gene functions. However, current technology, which utilizes DNA as barcodes, permits limited phenotyping and bulk-cell resolution. To enable novel screening capabilities, we developed a barcoding system operating at the protein level. We synthesized modules encoding triplet combinations of linear epitopes to generate>100 unique protein barcodes (Pro-Codes). Pro-Code-expressing vectors were introduced into cells and analyzed by CyTOF mass cytometry. Using just 14 antibodies, we detected 364 Pro-Code populations; establishing the largest set of protein-based reporters. By pairing each Pro-Code with a different CRISPR, we simultaneously analyzed multiple phenotypic markers, including phospho-signaling, on dozens of knockouts. Pro-Code/CRISPR screens found two interferon-stimulated genes, the immunoproteasome component Psmb8 and a chaperone Rtp4, are important for antigen-dependent immune editing of cancer cells and identified Socs1 as a negative regulator of Pd-l1. The Pro-Code technology enables simultaneous high-dimensional protein-level phenotyping of 100s of genes with single-cell resolution.Graphical Abstract
Source: Cell - Category: Cytology Source Type: research