Transcranial direct-current stimulation (tDCS) improves detection of simple bright stimuli by amblyopic Long Evans rats in the SLAG task and produces an increase of parvoalbumin labelled cells in visual cortices.

Transcranial direct-current stimulation (tDCS) improves detection of simple bright stimuli by amblyopic Long Evans rats in the SLAG task and produces an increase of parvoalbumin labelled cells in visual cortices. Brain Res. 2018 Oct 01;: Authors: Castaño-Castaño S, Martinez-Navarrete G, Morales-Navas M, Fernadez-Jover E, Sanchez-Santed F, Nieto-Escámez F Abstract In this work visual functional improvement of amblyopic Long Evans rats treated with tDCS has been assessed using the "slow angled-descent forepaw grasping" (SLAG) test. This test is based on an innate response that does not requires any memory-learning component and has been used before for measuring visual function in rodents. The results obtained show that this procedure is useful to assess monocular but not binocular deficits, as controls and amblyopic animals showed significant differences during monocular but not during binocular assessment. On the other hand, parvoalbumin labelling was analysed in three areas of the visual cortex (V1M, V1B and V2L) before and after tDCS treatment. No changes in labelling were observed after monocular deprivation. However, tDCS treatment significantly improved vision through the amblyopic eye, and a significant increase of parvoalbumin-positive cells was observed in the three areas, both in the stimulated hemisphere but also in the non-stimulated hemisphere. This effect occurred both in control and amblyopic animals. Thus, tDCS indu...
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research