Low Ctr1p, due to lack of Sco1p results in lowered cisplatin uptake and mediates insensitivity of rho0 yeast to cisplatin.

We report here that low copper medium rendered wild type hypersensitive to cisplatin, but failed to sensitize rho0 yeast to cisplatin. Wild type yeast grown in low copper medium exhibited ~2.0 fold enhanced cytotoxicity in survival and colony-forming ability compared to copper adequate wild type cells. The effect of copper restriction on cisplatin sensitivity was associated with upregulation of copper transporter 1 mRNA as well as protein, facilitating enhanced uptake and accumulation of cisplatin. Rho0 yeast also showed increased copper transporter 1 mRNA upon copper restriction, but failed to increase corresponding protein. Loss of synthesis of cytochrome coxidase 1 protein (Sco1) in rho0 cells deregulated copper transporter 1, impaired Pt uptake and lowered cytotoxicity, despite lowered glutathione levels. Sco1Δ mutants exhibited low copper transporter 1, reduced Pt accumulation suggesting that Sco1 mediated regulation of copper transporter 1 is responsible for altered sensitivity to cisplatin. Rho0 cells demonstrated loss of Sco1, resulting in copper deficiency by lowering copper transporter 1 abundance, via mechanism involving increased turnover due to ubiquitination. These findings reveal that a Sco1-dependent mitochondrial signal regulates cellular cisplatin import and cytotoxicity. PMID: 30041154 [PubMed - as supplied by publisher]
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research
More News: Biochemistry | Copper | Study