Ruthenium(II) polypyridyl complexes induce BEL-7402 cell apoptosis by ROS-mediated mitochondrial pathway.

Ruthenium(II) polypyridyl complexes induce BEL-7402 cell apoptosis by ROS-mediated mitochondrial pathway. J Inorg Biochem. 2014 Sep 16;141C:170-179 Authors: Jiang GB, Zheng X, Yao JH, Han BJ, Li W, Wang J, Huang HL, Liu YJ Abstract A new ligand dmdppz and its four ruthenium(II) polypyridyl complexes [Ru(dmb)2(dmdppz)](ClO4)2 (1), [Ru(bpy)2(dmdppz)](ClO4)2 (2), [Ru(phen)2(dmdppz)](ClO4)2 (3) and [Ru(dmp)2(dmdppz)](ClO4)2 (4) (where dmb, bpy, phen, dmp and dmdppz stand for 4,4'-dimethyl-2,2'-bipyridine, 2,2'-bipyridine, 1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline and 5,8-dimethoxylpyrido[3,2-a:2',3'-c]phenazine, respectively) have been synthesized and characterized. Their DNA binding behaviors show that the complexes bind to calf thymus DNA by intercalation. The complexes exhibit efficient photocleavage of pBR322 DNA on irradiation. The cytotoxicity of the ligand and the complexes toward HepG-2, HeLa, MG-63, A549 and BEL-7402 were assayed by MTT ((3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide)) method. The IC50 values of the complexes 1, 2, 3 and 4 toward BEL-7402 cells are 14.6, 16.8, 18.0 and 16.7μM, respectively. Dmdppz shows no cytotoxic activity against selected cell lines. The cellular uptake, apoptosis, comet assay, reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis were investigated. These results indicate that complexes 1-4 exert their toxicity through the intrins...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research