siRNAs and piRNAs Collaborate for Transposon Control in the Two-Spotted Spider Mite.

siRNAs and piRNAs Collaborate for Transposon Control in the Two-Spotted Spider Mite. RNA. 2018 Apr 20;: Authors: Mondal M, Mansfield K, Flynt A Abstract RNAi has revolutionized genetic research, and is being commercialized as an insect pest control technology. Mechanisms exploited for this purpose are antiviral and therefore rapidly evolving. Ideally, RNAi will also be used for non-insect pests, however, differences in RNAi biology makes this uncertain. Tetranychus urticae (two-spotted spider mite) is a destructive non-insect pest, which has a proclivity to develop pesticide resistance. Here we provide a comprehensive study of the endogenous RNAi pathways of spider mites to inform design of exogenous RNAi triggers. This effort revealed unexpected roles for small RNAs and novel genome surveillance pathways. Spider mites have an expanded RNAi machinery relative to insects, encoding RNA dependent RNA polymerase (Rdrp) and extra Piwi-class effectors. Through analyzing T. urticae transcriptome data we explored small RNA biogenesis, and discovered five siRNA loci that appear central to genome surveillance. These RNAs are expressed in the gonad, which we hypothesize to trigger production of piRNAs for control of transposable elements (TEs). This work highlights the need to investigate endogenous RNAi biology as lessons from model organisms may not hold in other species, impacting development of an RNAi strategy. PMID: 29678924 [PubM...
Source: RNA - Category: Genetics & Stem Cells Authors: Tags: RNA Source Type: research
More News: Biology | Genetics | Lessons | Study