Photon-Counting CT: High-Resolution Imaging of Coronary Stents

Purpose The aim of this study was to investigate computed tomography (CT) imaging characteristics of coronary stents using a novel photon-counting detector (PCD) in comparison with a conventional energy-integrating detector (EID). Materials and Methods In this in vitro study, 18 different coronary stents were expanded in plastic tubes of 3 mm diameter, were filled with contrast agent (diluted to an attenuation of 250 Hounsfield units [HU] at 120 kVp), and were sealed. Stents were placed in an oil-filled custom phantom calibrated to an attenuation of −100 HU at 120 kVp for resembling pericardial fat. The phantom was positioned in the gantry at 2 different angles at 0 degree and 90 degrees relative to the z axis, and was imaged in a research dual-source PCD-CT scanner. Detector subsystem “A” used a standard 64-row EID, while detector subsystem “B” used a PCD, allowing high-resolution scanning (detector pixel-size 0.250 × 0.250 mm in the isocenter). Images were obtained from both detector systems at identical tube voltage (100 kVp) and tube current-time product (100 mA), and were both reconstructed using a typical convolution kernel for stent imaging (B46f) and using the same reconstruction parameters. Two independent, blinded readers evaluated in-stent visibility and measured noise, intraluminal stent diameter, and in-stent attenuation for each detector subsystem. Differences in noise, intraluminal stent diameter, and in-stent attenuation where tested using a pa...
Source: Investigative Radiology - Category: Radiology Tags: Original Articles Source Type: research
More News: CT Scan | PET Scan | Radiology | Study