Wings as impellers: Honey bees co-opt flight system to induce nest ventilation and disperse pheromones [RESEARCH ARTICLE]

Jacob M. Peters, Nick Gravish, and Stacey A. Combes Honey bees (Apis mellifera) are remarkable fliers that regularly carry heavy loads of nectar and pollen, supported by a flight system – the wings, thorax and flight muscles - that one might assume is optimized for aerial locomotion. However, honey bees also use this system to perform other crucial tasks that are unrelated to flight. When ventilating the nest, bees grip the surface of the comb or nest entrance and fan their wings to drive airflow through the nest, and a similar wing-fanning behavior is used to disperse volatile pheromones from the Nasonov gland. In order to understand how the physical demands of these impeller-like behaviors differ from those of flight, we quantified the flapping kinematics and compared the frequency, amplitude and stroke plane angle during these non-flight behaviors to values reported for hovering honey bees. We also used a particle-based flow visualization technique to determine the direction and speed of airflow generated by a bee performing Nasonov scenting behavior. We found that ventilatory fanning behavior is kinematically distinct from both flight and scenting behavior. Both impeller-like behaviors drive flow parallel to the surface to which the bees are clinging, at typical speeds of just under 1 m/s. We observed that the wings of fanning and scenting bees frequently contact the ground during the ventral stroke reversal, which may lead to wing wear. Finally, we observed that be...
Source: Journal of Experimental Biology - Category: Biology Authors: Tags: RESEARCH ARTICLE Source Type: research
More News: Biology | Honey | Stroke