[Research Article] Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability

Temperature-induced cell death is thought to be due to protein denaturation, but the determinants of thermal sensitivity of proteomes remain largely uncharacterized. We developed a structural proteomic strategy to measure protein thermostability on a proteome-wide scale and with domain-level resolution. We applied it to Escherichia coli, Saccharomyces cerevisiae, Thermus thermophilus, and human cells, yielding thermostability data for more than 8000 proteins. Our results (i) indicate that temperature-induced cellular collapse is due to the loss of a subset of proteins with key functions, (ii) shed light on the evolutionary conservation of protein and domain stability, and (iii) suggest that natively disordered proteins in a cell are less prevalent than predicted and (iv) that highly expressed proteins are stable because they are designed to tolerate translational errors that would lead to the accumulation of toxic misfolded species. Authors: Pascal Leuenberger, Stefan Ganscha, Abdullah Kahraman, Valentina Cappelletti, Paul J. Boersema, Christian von Mering, Manfred Claassen, Paola Picotti
Source: ScienceNOW - Category: Science Authors: Source Type: news