Inter- and intrafractional dose uncertainty in hypofractionated Gamma Knife radiosurgery

The purpose of this study is to evaluate inter- and intrafractional dose variations resulting from head position deviations for patients treated with the Extend relo­catable frame system utilized in hypofractionated Gamma Knife radiosurgery (GKRS). While previous reports characterized the residual setup and intrafraction uncertainties of the system, the dosimetric consequences have not been investigated. A digital gauge was used to measure the head position of 16 consecutive Extend patients (62 fractions) at the time of simulation, before each fraction, and imme­diately following each fraction. Vector interfraction (difference between simula­tion and prefraction positions) and intrafraction (difference between postfraction and prefraction positions) shifts in patient position were calculated. Planned dose distributions were shifted by the offset to determine the time-of-treatment dose. Variations in mean and maximum target and organ at risk (OAR) doses as a func­tion of positional shift were evaluated. The mean vector interfraction shift was 0.64 mm (Standard Deviation (SD): 0.25 mm, maximum: 1.17 mm). The mean intrafraction shift was 0.39 mm (SD: 0.25 mm, maximum: 1.44 mm). The mean variation in mean target dose was 0.66% (SD: 1.15%, maximum: 5.77%) for inter­fraction shifts and 0.26% (SD: 0.34%, maximum: 1.85%) for intrafraction shifts. The mean variation in maximum dose to OARs was 7.15% (SD: 5.73%, maximum: 30.59%) for interfraction shifts and 4.07% (SD: 4.22%, maxim...
Source: Journal of Applied Clinical Medical Physics - Category: Physics Source Type: research
More News: Physics | Study