Beam perturbation characteristics of a 2D transmission silicon diode array, Magic Plate

The main objective of this study is to demonstrate the performance characteristics of the Magic Plate (MP) system when operated upstream of the patient in trans­mission mode (MPTM). The MPTM is an essential component of a real-time QA system designed for operation during radiotherapy treatment. Of particular interest is a quantitative study into the influence of the MP on the radiation beam quality at several field sizes and linear accelerator potential differences. The impact is measured through beam perturbation effects such as changes in the skin dose and/or percentage depth dose (PDD) (both in and out of field). The MP was placed in the block tray of a Varian linac head operated at 6, 10 and 18 MV beam energy. To optimize the MPTM operational setup, two conditions were investigated and each setup was compared to the case where no MP is positioned in place (i.e., open field): (i) MPTM alone and (ii) MPTM with a thin passive contamination electron filter. The in-field and out-of-field surface doses of a solid water phantom were investigated for both setups using a Markus plane parallel (Model N23343) and Attix parallel-plate, MRI model 449 ionization chambers. In addition, the effect on the 2D dose distribution measured by the Delta4 QA system was also investi­gated. The transmission factor for both of these MPTM setups in the central axis was also investigated using a Farmer ionization chamber (Model 2571A) and an Attix ionization chamber. Measurements were performed for...
Source: Journal of Applied Clinical Medical Physics - Category: Physics Source Type: research
More News: Physics | Skin | Study