Molar absorption coefficients and stability constants of metal complexes of 4-(2-pyridylazo)resorcinol (PAR): Revisiting common chelating probe for the study of metalloproteins.

Molar absorption coefficients and stability constants of metal complexes of 4-(2-pyridylazo)resorcinol (PAR): Revisiting common chelating probe for the study of metalloproteins. J Inorg Biochem. 2015 Sep 5;152:82-92 Authors: Kocyła A, Pomorski A, Krężel A Abstract 4-(2-Pyridylazo)resorcinol (PAR) is one of the most popular chromogenic chelator used in the determination of the concentrations of various metal ions from the d, p and f blocks and their affinities for metal ion-binding biomolecules. The most important characteristics of such a sensor are the molar absorption coefficient and the metal-ligand complex dissociation constant. However, it must be remembered that these values are dependent on the specific experimental conditions (e.g. pH, solvent components, and reactant ratios). If one uses these values to process data obtained in different conditions, the final result can be under- or overestimated. We aimed to establish the spectral properties and the stability of PAR and its complexes accurately with Zn(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Cu(2+), Mn(2+) and Pb(2+) at a multiple pH values. The obtained results account for the presence of different species of metal-PAR complexes in the physiological pH range of 5 to 8 and have been frequently neglected in previous studies. The effective molar absorption coefficient at 492nm for the ZnHx(PAR)2 complex at pH7.4 in buffered water solution is 71,500M(-1)cm(-1), and the dissoci...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research
More News: Biochemistry | Study