The role of the active site lysine residue on FAD reduction by NADPH in glutathione reductase

Comput Biol Chem. 2024 Apr 16;110:108075. doi: 10.1016/j.compbiolchem.2024.108075. Online ahead of print.ABSTRACTGlutathione reductase (GR) is a two dinucleotide binding domain flavoprotein (tDBDF) that catalyzes the reduction of glutathione disulfide to glutathione coupled to the oxidation of NADPH to NADP+. An interesting feature of GR and other tDBDFs is the presence of a lysine residue (Lys-66 in human GR) at the active site, which interacts with the flavin group, but has an unknown function. To better understand the role of this residue, the dynamics of GR was studied using molecular dynamics simulations, and the reaction mechanism of FAD reduction by NADPH was studied using QM/MM molecular modeling. The two possible protonation states of Lys-66 were considered: neutral and protonated. Molecular dynamics results suggest that the active site is more structured for neutral Lys-66 than for protonated Lys-66. QM/MM modeling results suggest that Lys-66 should be in its neutral state for a thermodynamically favorable reduction of FAD by NADPH. Since the reaction is unfavorable with protonated Lys-66, the reverse reaction (the reduction of NADP+ by FADH-) is expected to take place. A phylogenetic analysis of various tDBDFs was performed, finding that an active site lysine is present in different the tDBDFs enzymes, suggesting that it has a conserved biological role. Overall, these results suggest that the protonation state of the active site lysine determines the energetics of ...
Source: Computational Biology and Chemistry - Category: Bioinformatics Authors: Source Type: research