< em > Pseudomonas aeruginosa < /em > Lipid A Structural Variants Induce Altered Immune Responses

Am J Respir Cell Mol Biol. 2024 Apr 24. doi: 10.1165/rcmb.2024-0059OC. Online ahead of print.ABSTRACTPseudomonas aeruginosa causes chronic lung infection in cystic fibrosis (CF), resulting in structural lung damage and progressive pulmonary decline. P. aeruginosa in the CF lung undergoes numerous changes, adapting to host-specific airway pressures while establishing chronic infection. P. aeruginosa undergoes lipid A structural modification during CF chronic infection, not seen in any other disease state. Lipid A, the membrane anchor of lipopolysaccharide (i.e., endotoxin), comprises the majority of the outer membrane of Gram-negative bacteria and is a potent toll-like receptor (TLR)4 agonist. The structure of P. aeruginosa lipid A is intimately linked with its recognition by TLR4, and subsequent immune response. Prior work has identified P. aeruginosa strains with altered lipid A structures that arise during chronic CF lung infection; however, the impact of P. aeruginosa lipid A structure on airway disease has not been investigated. Here, we show that P. aeruginosa lipid A lacks PagL-mediated deacylation during human airway infection using a direct-from-sample mass spectrometry approach on human bronchoalveolar lavage fluid. This structure triggers increased pro-inflammatory cytokine production by primary human macrophages. Furthermore, alterations in lipid A 2-hydroxylation impact cytokine response in a site-specific manner, independent of CFTR function. Interestingly, there...
Source: Am J Respir Cell Mol... - Category: Respiratory Medicine Authors: Source Type: research