Phosphorylation of AS160-Serine 704 is Not Essential for Exercise-increase in Insulin-stimulated Glucose Uptake by Skeletal Muscles from Female or Male Rats

Am J Physiol Endocrinol Metab. 2024 Apr 24. doi: 10.1152/ajpendo.00010.2024. Online ahead of print.ABSTRACTOne exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle from rodents and humans of both sexes. We recently found that concurrent mutation of three key sites to prevent their phosphorylation (Ser588, Thr642, and Ser704) on Akt substrate of 160 kDa (AS160; also known as TBC1D4) reduced the magnitude of the enhancement of postexercise ISGU (PEX-ISGU) by muscle from male, but not female rats. However, we did not test the role of individual phosphorylation sites on PEX-ISGU. Accordingly, our current aim was to test if AS160 Ser704 phosphorylation (pSer704) is required for elevated PEX-ISGU by muscle. AS160-knockout (AS160-KO) rats (female and male) were studied when either sedentary or 3 hours after acute exercise. Adeno-associated virus (AAV) vectors were used to enable muscle expression of wildtype-AS160 (AAV-WT-AS160) or AS160 mutated Ser704 to alanine to prevent phosphorylation (AAV-1P-AS160). Paired epitrochlearis muscles from each rat were injected with AAV-WT-AS160 or AAV-1P-AS160. We discovered that regardless of sex: 1) AS160 abundance in AS160-KO rats was similar in paired muscles expressing WT-AS160 versus 1P-AS160; 2) muscles from exercised versus sedentary rats had greater ISGU, and PEX-ISGU was slightly greater for muscles expressing 1P-AS160 versus contralateral muscles expressing WT-AS160; 3) pAS160 Thr642 was l...
Source: Am J Physiol Endocri... - Category: Endocrinology Authors: Source Type: research