Highly sensitive humidity sensor based on composite film of partially reduced graphene oxide and bacterial cellulose

In this study, a humidity sensing composite film with high sensitivity and short response time was made by using the mixture of graphene oxide (GO) and bacterial cellulose (BC) with simple dry film-forming method. L-ascorbic acid was used as reducing agent to reduce GO and improve the conductivity of GO/BC composite film (BG). The influence of different BC contents and the different reduction degree on the resistance change rate of composite film was investigated in details. The maximum resistance change rate of partially reduced BG humidity sensitive composite film reached up to 94%, and the response and recovery time were 13 s and 47 s respectively. Furthermore, the sensor shows obvious resistance change in noncontact sensing test and different breathing states. This kind of humidity sensitive film with fast response and high sensitivity has great potential in human health monitoring and noncontact sensing, and is of great significance in promoting health detection and intelligent life.PMID:38643550 | DOI:10.1016/j.bios.2024.116296
Source: Biosensors and Bioelectronics - Category: Biotechnology Authors: Source Type: research