Transfer learning and self-distillation for automated detection of schizophrenia using single-channel EEG and scalogram images

In this study, our main goal is to develop an optimized system that can achieve automatic diagnosis of SZ with minimal input information. To optimize the system, we adopted a strategy of using single-channel EEG signals and integrated knowledge distillation and transfer learning techniques into the model. This approach was designed to improve the performance and efficiency of our proposed method for SZ diagnosis. Additionally, to leverage the pre-trained models effectively, we converted the EEG signals into images using Continuous Wavelet Transform (CWT). This transformation allowed us to harness the capabilities of pre-trained models in the image domain, enabling automatic SZ detection with enhanced efficiency. To achieve a more robust estimate of the model's performance, we employed fivefold cross-validation. The accuracy achieved from the 5-s records of the EEG signal, along with the combination of self-distillation and VGG16 for the P4 channel, is 97.81. This indicates a high level of accuracy in diagnosing SZ using the proposed method.
Source: Australasian Physical and Engineering Sciences in Medicine - Category: Biomedical Engineering Source Type: research