Research on a new multiple-screening method for laser-induced plasma spectroscopy utilizing Lorentz

Talanta. 2024 Apr 15;275:126087. doi: 10.1016/j.talanta.2024.126087. Online ahead of print.ABSTRACTIn the field of Laser Induced Breakdown Spectroscopy (LIBS) research, the screening and extraction of complex spectra play a crucial role in enhancing the accuracy of quantitative analysis. This paper introduces a novel approach for multiple screenings of LIBS spectra using Lorentz Screening and Sensitivity and Volatility Analysis. Initially, Create symmetrical sampling standards for Lorentz fitting. Then the Lorentz fitting is used to uniformly screen the collected spectral information on both sides in order to eliminate adjacent interference peaks. Subsequently, Sensitivity and Volatility Analysis is employed to further remove overlapping peaks and select spectra with low volatility and high sensitivity. Sensitivity and Volatility Analysis is a spectral discrimination method proposed on the premise of intensity's correlation with concentration. It utilizes a Z-score method that incorporates both deviation and standard deviation for effective analysis. Furthermore, it meticulously selects spectral lines with minimal interference and volatility, thereby augmenting the precision of quantitative analysis. The quantitative accuracy (R2) for Chromium (Cr) and Nickel (Ni) elements can reach 0.9919 and 0.9768, respectively. Their average errors can be reduced to 0.0566 % and 0.1024 %. The study demonstrates that Lorentz Screening and Sensitivity and Volatility Analysis can select high...
Source: Talanta - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Chromium | Study