Probing Energy-Funneling Kinetics in Nanocrystal Sublattices for Superior X-ray Imaging

Angew Chem Int Ed Engl. 2024 Apr 18:e202404177. doi: 10.1002/anie.202404177. Online ahead of print.ABSTRACTLong-lasting radioluminescence scintillators have recently attracted substantial attention from both research and industrial communities, primarily due to their distinctive capabilities of converting and storing X-ray energy. However, determination of energy-conversion kinetics in these nanocrystals remaines unexplored. Here we investigate energy funneling kinetics in NaLuF4:Mn2+/Gd3+ nanocrystal sublattices via Gd3+-driven microenvironment engineering and Mn2+-mediated radioluminescence profiling. Our photophysical studies reveal effective control of energy-funneling kinetics and demonstrate the tunability of electron trap depth ranging from 0.66 to 0.96 eV, with the corresponding trap density varying between 2.38 × 105 and 1.34 × 107 cm-3. This enables controlled release of captured electrons over durations spanning from seconds to 30 days. Furthermore, it allows tailorable radioluminescence emission within the range of 520-580 nm and fine-tuning of thermally-stimulated temperature between 313-403 K. We further utilize these scintillators to fabricate high-density, large-area scintillation screens that exhibit a 6-fold improvement in X-ray sensitivity, 22 lp/mm high-resolution X-ray imaging, and a 30-day-long optical memory. This enables high-contrast imaging of injured mice through fast thermally-stimulated radioluminescence readout. These findings offer new insight...
Source: Angewandte Chemie - Category: Chemistry Authors: Source Type: research