Secondary-electron imaging of bulk crystalline specimens in an aberration corrected STEM

In this study, we explore the practicality of scanning transmission electron microscope (STEM) imaging with secondary electrons (SE), using a silicon-wedge specimen having a maximum thickness of 18 μm. We find that the atomic structure is present in the entire thickness range of the SE images although the background intensity increases moderately with thickness. The consistent intensity of secondary electron (SE) images at atomic positions and the modest increase in background intensity observed in silicon suggest a limited contribution from SEs generated by backscattered electrons, a conclusion supported by our multislice calculations. We conclude that achieving atomic resolution in SE imaging for bulk specimens is indeed attainable using aberration-corrected STEM and an aberration-corrected scanning electron microscope (SEM) may have the capacity for atomic-level resolution, holding great promise for future strides in materials research.PMID:38615523 | DOI:10.1016/j.ultramic.2024.113967
Source: Ultramicroscopy - Category: Laboratory Medicine Authors: Source Type: research